WHY DO AUTOIMMUNE DISEASES HAPPEN?

Ekaterina Mendoza-Kuznetsova, DVM, Dip ECVD Cummings Veterinary School, Tufts University, USA

HISIVIER

WHAT IS AUTOIMMUNITY?

- Impaired tolerance to self antigens, which leads to the activation of autoreactive T and / or B lymphocytes and the development of autoimmune pathologies
 - Multifactorial process.

IMMUNOLOGICAL TOLERANCE

- State of unresponsiveness of the immune system to particular antigens.
 - It arises as a result of a special "acquaintance" of lymphocytes with these antigens and the selection and survival only those lymphocytes that are tolerant to self-antigens.

WHAT SHOULD LYMPHOCYTES RECOGNIZE?

- Molecules of the main histocompatibility complex
- Antigen

MAJOR HISTOCOMPATIBILITY COMPLEX (MHC)

MHC class I (all nucleated cells)

α₃ α,

LYMPHOCYTE RECEPTORS

T-lymphocyte

B-lymphocyte

HOW IS THE DIVERSITY OF LYMPHOCYTE RECEPTORS FORMED?

LYMPHOCYTE SELECTION

- All lymphocytes are originated from the bone marrow.
- Maturation and differentiation of lymphocytes occurs in the bone marrow (B lymphocytes) and thymus (T lymphocytes)
- Huge variety of lymphocyte receptors
- Lymphocyte selection:
 - <u>Positive</u>: only lymphocytes that recognize self-MHC survive
 - <u>Negative</u>: removal of lymphocytes that are activated by the recognition of self-peptides.

Figure 1-14 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

TOLERANCE

Central

- Lymphocyte selection during their formation and maturation
 - Not all of the autoantigens can be presented in the central immune system organs
- Development of T-regulatory cell (suppressors), which also recognize autoantigens

Peripheral

• Absence of second signal (co-stimulation) after antigen recognition

LYMPHOCYTES, ANTIGEN RECOGNITION

Second signal (co-stimulation)

- Microbial proteins
- Microbe-induced derivates of natural immune cells (macrophages) (B7, cytokines)
- Complement component C3d, attached to the microbe
- T-cell cytokine for B-lymphocyte.

TOLERANCE

Central

- Lymphocyte selection during their formation and maturation
 - Not all of the autoantigens can be presented in the central immune system organs
- Development of T-regulatory cell (suppressors), which also recognize autoantigens

Peripheral

- Absence of second signal (co-stimulation) after antigen recognition anergy
- The action of T-regulatory cells suppressing lymphocytes in the tissues
- Apoptosis of lymphocyte which recognize self-antigens in tissue caspase activation
- Physiological separation of autoantigens from lymphocytes:
 - Follicles, testicles, eyes, placenta and fetus, brain.

AUTOIMMUNITY MECHANISMS (1)

- Overexpression of certain autoantigens
 - Violation of the apoptosis mechanism

APOPTOSIS VS. NECROSIS

AUTOIMMUNITY MECHANISMS(1)

- Overexpression of certain autoantigens
 - Defect of the apoptosis mechanism
 - Defect of the removal of apoptosis products
- Expression of "hidden" self-antigens or antigens from "immune-privileged" organs (follicles, testicles, eyes, etc.)
 - Injuries and infections
 - Expression of secondary "hidden" auto-antigens due to inflammation.

FOLLICLE IS AN IMMUNO-PRIVILEGED ORGAN

- Follicle cells do not express MHC molecules.
- Reduced number of antigen-presenting cells (APC)
- Increased number of molecules that induce tolerance (IL-10, TGFβ)
- Defect of this "privilege" may be a mechanism for the alopecia areata development.

AUTOIMMUNITY MECHANISMS (2)

- Defect of the central tolerance mechanisms
 - Autoimmune polyendocrinopathy syndrome, candidiasis and ectodermal dystrophy - hypoparathyroidism, hypoadrenocorticism, hypothyroidism, hypogonadism, vitiligo, alopecia areata, hepatitis
 - Defect of self-antigens presentation for negative selection of T-lymphocytes in the thymus
 - Thymoma-associated autoimmune diseases paraneoplastic pemphigus, myasthenia gravis, erythema multiforme.

AUTOIMMUNITY MECHANISMS (3)

- Molecular mimicry identical short sequences of amino acids in molecules of foreign and selfproteins - similar epitopes
 - Rheumatism antibodies to Streptococcus group A cross-react with autoantigens of the heart, skin, joints and brain polyarthritis, etc.
 - Fogo Selvagem (FS) endemic pemphigus foliaceous
 - Possible cross-reaction with saliva antigens of flies.

PREDISPOSING AND TRIGGERING FACTORS

- Immunological imbalance
 - Decreased T-regulatory lymphocyte activity
 - Increased T-helper activity 17
- Genetic predisposition
- Age, gender, diet, lifestyle
- Infections, chemical exposure, tumors, UV light exposure.

GENETIC PREDISPOSITION

- Most often the pathology of MHC genes
- Examples:
 - Collie and sheltie vesicular lupus erythematosus
 - Collie and sheltie familiar dermatomyositis
 - Akita Inu uderomatological syndrome
 - German pointers exfoliative cutaneous lupus erythematosus.

Veterinary Dermatology 2005, 16, 239–252

Clinical, histopathological and immunological characteristics of exfoliative cutaneous lupus erythematosus in 25 German short-haired pointers

SHARON L. BRYDEN*, STEPHEN D. WHITE[‡], STANLEY M. DUNSTON[†], AMANDA K. BURROWS* and THIERRY OLIVRY[†]

GENETIC PREDISPOSITION

- Most often the pathology of MHC genes
- Shar Pei, German Shepherds
 - IgA deficiency susceptibility to infections and autoimmune diseases
- American Cocker Spaniels
 - Autoimmune cytopenia (anemia, thrombocytopenia)
- Nova Scotia Duck Tolling Retriever
 - Multisystem autoimmune pathology defect of T-lymphocyte activation
- Golden Retriever (?), Hovawart and Giant Schnauzers
 - Lymphocytic thyroiditis hypothyroidism.

AGE

- Most autoimmune pathologies affect middle aged and older patients
- Increased immunoglobulin levels
- Decreased cellular immunity
- Reducing the percentage of T-helper cells, including T-regulatory cells.

TUMORS AS TRIGGERS AUTOIMMUNITY

- Cytopenia in tumors
- Thymoma-associated exfoliative dermatitis
- Paraneoplastic pemphigus.

Putative paraneoplastic pemphigus and myasthenia gravis in a cat with a lymphocytic thymoma

(a)

Peter B. Hill*, Phil Brain†, David Collins†, Steve Fearnside† and Thierry Olivry‡

UV LIGHT EXPOSURE

DRUG-INDUCED REACTIONS

- Drug-induced pemphigus foliaceus:
 - Promeris Duo
 - Certifect
 - Vectra 3D.

DRUG-INDUCED REACTIONS

• Drug-induced or triggered vasculopathies.

INFECTIONS AS TRIGGERS OF AUTOIMMUNITY(1)

- Viral infections
 - May cause polyclonal Blymphocyte activation
 - Polyclonal hypergammaglobulinemia and peripheral lymphadenopathy.

- Bacterial infections
 - Superantigens

INFECTIONS AS TRIGGERS OF AUTOIMMUNITY(2)

© Elsevier. Abbas & Lichtman: Basic Immunology, Updated 2e - www.studentconsult.com

CAUSES OF AUTOIMMUNITY

