Minimally invasive plate osteosynthesis (MIPO) I do not have a fluoroscope.Now what?

Dr. Vladislav Zlatinov, DVM Central veterinary Clinic- Sofia, Bulgaria

A complex, highly regulated process with consecutive phases of inflammation, repair and remodeling.

Bone blood supply

Afferent system – supplying metaphyseal and periosteal arteries.

•Vascular net of the compact bone.

•Efferent system- venous drainage of the periosteum.

Intra- osseous blood supply

Implants imprint

Periosteum

Unstable ulnar fracture

6 w post DCP osteosynthesis

Plate osteosynthesis

The pioneer

- Robert Danis- the father of the plate osteosythes.
- 1938- first axial compression plate.
- Igage 1949- the theory and practice of osteosynthesis.

1950- External skeletal fixation

Gavril Abramovich Ilizarov (1921-1992)

Circular external fixator-1950 Distraction osteogenesis

AO 1958

ARBEITSGEMEINSCHAFT FÜR **O**STEOSYNTHESEFRAGEN

STUDY GROUP FOR OPERATIVE FRACTURE TREATMENT

- 1958
- ORIF results investigation
- Emphasis- rigid fracture stabilization with plates.

AO Group

"Association for the Study of Internal Fixation"

AO (ASIF) 1958 **Functional rehabilitation** Anatomical reduction **Mechanically Stable Fixation** Interfragmentary Compression No external splints - Early mobilization Dynamic Compression Plate (DCP) \frown \frown \frown 1963 + 1969

AO Principles (1960)

- Anatomical reduction
- Rigid internal fixation
- Preservation blood supply
- Early mobilisation

Principle of absolute stability and primary bone healing

Conventional approach- absolute stability

Too much emphasis on biomechanics..

Respect of soft tissues?

A predictable result...

A predictable result...

Lack of respect of the soft tissue environment

OBDNT- the first step towards biology

Open but do not touch

Evolution AO Principles (1990)

- Anatomical reduction
- Rigid internal fixation
- Preservation blood supply
- Early mobilisation

- Functional reduction
- Stable internal fixation
- Preservation blood supply
- Early mobilisation

The concept of Biological Osteosynthesis

Functional reduction Stable internal fixation Preservation blood supply Early mobilisation

Reducible vs non reducible

Concept Verdict

Absolute vs Relative

Concept Verdict

Human femoral fractures

Variable	Group I(1970's)	Group 2 (1980's)	Group 3(1990's)
Implants failures	19%	10%	4%
Non-unions	10%	3%	4%
Mal-unions	10%	7%	0%
Re-operations	43%	31%	13%
Clinical unions (months)	5	5	3
Success rate	62%	83%	87%

Rozbuch et al, CORR 1998

Conventional approach, femoral fracture

Complications – Plate fixation

Slow healing (35%)
Nonunion
Delayed union
Infection (5%)
Implant failure (15%)
Malalignment (20%)
Angulation
Torsion

Compromised blood supply

latrogenic surgical trauma

Biological Osteosinthesis with ESF-<u>relative</u> <u>stability</u>

What about Plates?

Flexible fixation that stimulate callus formation.

Evolution of concepts

ORIF

MIPO **OBDNT**

•Reduce the footprint of the implants will reduce the damage to the bone.

Courtesy: Dr. Bruno Peirone

- Access to the bone through soft tissue <u>windows</u>.
- Minimal additional trauma to the the fracture site when direct reduction is NOT necessary.

- Preservation of biology
- **Decreased infection**
- Faster healing
- Decreased wound complications

ORIF

MIPO

Pozzi et al, VOS 2011

MIPO Disadvantages

• Disadvantages

- Limb alignment
- No fragment reduction
- Implant load \bigcirc
- Time consuming?

The first retrospective study ...

• 8 tibia ORIF vs 8 tibia MIPO

- MIPO 5/8 healed, no complication
- ORIF 2/8 healed, 1 complication

Retrospective comparison between minimally invasive plate osteosynthesis and open plating for tibial fractures in dogs

A. Boero Baroncelli¹; B. Peirone¹; M. D. Winter²; D. J. Reese²; A. Pozzi² ¹Department of Animal Pathology, College of Veterinary Medicine, University of Turin, Grugliasco (TO), Italy; ²Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida Gainesville, FL, USA

Dejardin L, Cabassu JP. Femural fractures in young dogs. AO Dialogue 3/2008

MIPO and elastic plate fixation. Femoral fractures in two young dogs.

Veterinary Surgery 42 (2013) 19–27 © Copyright 2012 Retrospective Comparison of Minimally Invasive Plate Osteosynthesis and Open Reduction and Internal Fixation of Radius-Ulna Fractures in Dogs

Antonio Pozzi, DMV, MS, Diplomate ACVS, Caleb C. Hudson, DVM, MS, Christopher M. Gauthier, DVM, and Daniel D. Lewis, DVM, Diplomate ACVS

- Retrospective cohort study
- MIPO vs ORIF (15 cases each)
- No statistical differences
 - Operating time
 - Postoperative alignment
 - Time to union
 - MIPO: 51.9 ± 18.4 days
 - ORIF: 49.5 ± 26.5 days

Surgical approaches for minimally invasive plate osteosynthesis in dogs

A. Pozzi; D. D. Lewis Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA

Description of surgical approaches for MIPO

Main bone segments

Guidelines for surgical approaches for minimally invasive plate osteosynthesis in cats

Philipp A. Schmierer; Antonio Pozzi

Vetsuisse Faculty University of Zurich, Clinic for Small Animal Surgery, Zurich, Switzerland

"The surgical approaches developed for the humerus and radius-ulna differedbetween dogs and cats"

anatomy

surgical approach

indirect reduction

implant selection

intra-op imaging

Indirect reduction

Fixation

- Traction table
- IM Pin
- Bone reduction forceps
- External fixator

Indirect Reduction Techniques

Pre op distraction hanging

Hanging Technique

Clinical application of intraoperative skeletal traction in the dog

G. L. Rovesti¹, A. Margini¹, F. Cappellari², B. Peirone² ¹Veterinary Clinic M. E. Miller, Cavriago, Reggio Emilia, Italy ²Department of Animal Pathology, School of Veterinary Medicine of Turin, Grugliasco, Turin, Italy

Intraoperative skeletal traction in the dog

A cadaveric study

G. L. Rovesti¹, A. Margini¹, F. Cappellari², B. Peirone² ¹Veterinary Clinic M. E. Miller, Cavriago, Reggio Emilia, Italy ²School of Veterinary Medicine of Turin, Grugliasco, Turin, Italy

Vet Comp Orthop Traumatol 2006; 19: 9–13

Vet Comp Orthop Traumatol 2006; 19: 14–9

Traction table

IM pinning

Fractured femur

I M pin distractor

Normal femur

Diameter 30-50% of medullary canal

Distally- engaging the metaphyseal area

IM pinning

Bone holding forceps

Bone holding forceps

 Distract/ manipulate bone segments

 Serrated bone holders- space occupying

Can interfere with the plate

Courtesy: B. Peirone

Retrospective Comparison of Minimally Invasive Plate Osteosynthesis and Open Reduction and Internal Fixation of Radius-Ulna Fractures in Dogs

Antonio Pozzi, DMV, MS, Diplomate ACVS, Caleb C. Hudson, DVM, MS, Christopher M. Gauthier, DVM, and Daniel D. Lewis, DVM, Diplomate ACVS

Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL

External Fixator

External Fixator

Courtesy: Dr. A.Pozzi

• Push-Pull device

Check alignment!!

Reduction with a plate

VI orthopaedic distractor

- Muscle contraction overcoming
- Accurate alignment

distractor

Distraction device

Leraning curve

Experience

Difficulty

Chose your battles wisely..

Case selection

Difficulty

ML view contralateral limb Xray.

Assessment of plate length.

90% of the tibia length.

Contour the plate on the **AP view** of the unaffected limb.

Plate pre-contouring

First fix the plate proximally to avoid external rotation

Schmokel HG et al, VCOT 2003

Twisting

Plate pre-contouring

Plate pre-contouring

Dorsal recumbency

Affected tibia out from the surgical table.

Lateral recumbency

Affected tibia over the surgical table

Torsional alignment ?

Proximal approach

- ligament
- Retract m. sartorius caudally

Distal approach

malleolus

Surgical portals

Skin incision over medial collateral

Skin incision centered over medial

Bone tunnelling

- Proximal to distal
- Distal to proximal
- Both ways
- Fracture configuration and fragments dispersion

- Frontal and sagittal plane Length
- Varus / valgus – Pro / retrocurvatum
- Rotational

Alignment evaluation

Courtesy Dr. L. Dejardin

ADVANTAGES

Temporary aliment tool

If the pin left, 30 % stronger

Plate and rod

MIPO Radius

Anatomic considerations

Plate positioning

- Dorsal •
- Medial •
- Neurovascular structures

MIPO Radius

Contour the plate on the lateral view of the unaffected limb.

Plate pre-contouring

Cranio-medial approach to the radius. Orsal recumbency. A foam pad under the ipsilateral shoulder. The limb is extended caudally.

Medial

What about the ulna?

Ulna pinning

Minimally invasive application of a radial plate following placement of an ulnar rod in treating antebrachial fractures **Technique and case series**

T. H. Witsberger¹; D. A. Hulse^{1,2}; S. C. Kerwin¹; W. B. Saunders¹ ¹Department of Veterinary Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences⁴ Texas A&M University, College Station, Texas, USA; ²Veterinary Orthopedic Center, Round Rock, Texas, USA

Normograde insertion from olecranon \bigcirc

Retrogarde insertion from ulna site \bigcirc

Ulna pinning

Courtesy: A. Pozzi

Courtesy: A. Pozzi

Ulna plating

Shizu

2y, male, pitbul, 28 kg HBC

MIPO medial approach

AAA C C

8

b

ĕ

00000

ORIF

10 weeks f up

15 y old dachshund, 6,5 kg HBC

12 weeks follow up

Surgical approaches for minimally invasive plate osteosynthesis in dogs

A. Pozzi; D. D. Lewis

Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA

"Combination approaches to the greater trochanter and the approach to the distal femur through a lateral incision. "

MIPO Femur

VD view of the unaffected limb.

Plate pre-contouring

Chondrodistrophic breeds- also lateral

Plate pre-contouring

Plate length

Plate/bone ratio 80-90%

Allows <u>elastic</u> fixation

Distal plate twist

Plate pre-contouring

2nd bend out of the plane (twist)

Alignment of Bone and Limb

- Correct the alignment of the bone and limb
 - Angulation
 - Translation
 - Rotation
 - Length

Anteversion angle- intra operatively

Anteversion angle- intra operatively

AAAA post op evaluation

Preoperative

Postoperative

ADVANTAGES

Temporary aliment tool

30 % stronger

Gino 6.5 months, mix, 20 kg Hit by a car, Multiple injuries

DCP osteosynthesis

MIPO, plate + rod

2,4 locking Mikromed

000

10 d post op

40 days

Remodeling phase

4 months, f up

Combination of the approaches- proximal shaft of the humerus and the lateral condyle.

- Avoid the radial nerve retraction with a Senn retractor.
- Plate, under the brachialis muscle.
- "...sliding the plate cranially .. to prevent caudal displacement of the plate..."

MIPO Humerus

Lateral vs Medial Plating

Buki, 2 y old pekingese HBC

MIPO Humerus

8 days post op

10 weeks f up

MIPO Humerus- intraairticular

MINIMALLY INVASIVE OSTEOSYNTHESIS IN NON-DIAPHYSEAL FRACTURES Kenneth A Johnson MVSc, PhD, FACVSc, DACVS, DECVS University of Sydney – Sydney NSW 2006 AUSTRALIA Loïc M. Déjardin, DVM, MS, DACVS, DECVS Michigan State University, East Lansing – Michigan

https://www.acvs.org

Proper fx selection Start with the tibia Do not struggle

Ready to switch to OPEN Check proper alignment

